3.1069 \(\int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=111 \[ \frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a (A+3 C)+3 b B)}{3 d}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a B+A b-b C)}{d}+\frac {2 (a B+A b) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

-2*(A*b+B*a-C*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(
3*b*B+a*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a
*A*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2*(A*b+B*a)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {3031, 3021, 2748, 2641, 2639} \[ \frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a (A+3 C)+3 b B)}{3 d}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a B+A b-b C)}{d}+\frac {2 (a B+A b) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-2*(A*b + a*B - b*C)*EllipticE[(c + d*x)/2, 2])/d + (2*(3*b*B + a*(A + 3*C))*EllipticF[(c + d*x)/2, 2])/(3*d)
 + (2*a*A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2}{3} \int \frac {-\frac {3}{2} (A b+a B)-\frac {1}{2} (3 b B+a (A+3 C)) \cos (c+d x)-\frac {3}{2} b C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {4}{3} \int \frac {\frac {1}{4} (-3 b B-a (A+3 C))+\frac {3}{4} (A b+a B-b C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-(A b+a B-b C) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{3} (-3 b B-a (A+3 C)) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=-\frac {2 (A b+a B-b C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (3 b B+a (A+3 C)) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 115, normalized size = 1.04 \[ \frac {2 \left (\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a A+3 a C+3 b B)-3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a B+A b-b C)+a A \tan (c+d x)+3 a B \sin (c+d x)+3 A b \sin (c+d x)\right )}{3 d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(2*(-3*(A*b + a*B - b*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (a*A + 3*b*B + 3*a*C)*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2] + 3*A*b*Sin[c + d*x] + 3*a*B*Sin[c + d*x] + a*A*Tan[c + d*x]))/(3*d*Sqrt[Cos[c +
d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.55, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {C b \cos \left (d x + c\right )^{3} + {\left (C a + B b\right )} \cos \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + (C*a + B*b)*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))/cos(d*x + c)^(5/2)
, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 6.25, size = 666, normalized size = 6.00 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*B*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*a*C*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))-2*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*a*A*(-1/6*cos(1/2*d*x+1/2*c)
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2)))+2*(A*b+B*a)*(-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2
-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [B]  time = 3.77, size = 184, normalized size = 1.66 \[ \frac {2\,B\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(5/2),x)

[Out]

(2*B*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*C*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*C*b*ellipticE(c/2 + (d*x)/2
, 2))/d + (2*A*a*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*
x)^2)^(1/2)) + (2*A*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c +
 d*x)^2)^(1/2)) + (2*B*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(
c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________